Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants.
نویسندگان
چکیده
The folding, stability, and oligomerization of helical membrane proteins depend in part on a precise set of packing interactions between transmembrane helices. To understand the energetic principles of these helix-helix interactions, we have used alanine-scanning mutagenesis and sedimentation equilibrium analytical ultracentrifugation to quantitatively examine the sequence dependence of the glycophorin A transmembrane helix dimerization. In all cases, we found that mutations to alanine at interface positions cost free energy of association. In contrast, mutations to alanine away from the dimer interface showed free energies of association that are insignificantly different from wild-type or are slightly stabilizing. Our study further revealed that the energy of association is not evenly distributed across the interface, but that there are several "hot spots" for interaction including both glycines participating in a GxxxG motif. Inspection of the NMR structure indicates that simple principles of protein-protein interactions can explain the changes in energy that are observed. A comparison of the dimer stability between different hydrophobic environments suggested that the hierarchy of stability for sequence variants is conserved. Together, these findings imply that the protein-protein interaction portion of the overall association energy may be separable from the contributions arising from protein-lipid and lipid-lipid energy terms. This idea is a conceptual simplification of the membrane protein folding problem and has implications for prediction and design.
منابع مشابه
A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملThe stability of transmembrane helix interactions measured in a biological membrane.
Despite some promising progress in the understanding of membrane protein folding and assembly, there is little experimental information regarding the thermodynamic stability of transmembrane helix interactions and even less on the stability of transmembrane helix-helix interactions in a biological membrane. Here we describe an approach that allows quantitative measurement of transmembrane helix...
متن کاملThe Calpha ---H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions.
The Calpha---H...O hydrogen bond has been given little attention as a determinant of transmembrane helix association. Stimulated by recent calculations suggesting that such bonds can be much stronger than has been supposed, we have analyzed 11 known membrane protein structures and found that apparent carbon alpha hydrogen bonds cluster frequently at glycine-, serine-, and threonine-rich packing...
متن کاملSequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix dimer.
To quantify the relationship between sequence and transmembrane dimer stability, a systematic mutagenesis and thermodynamic study of the protein-protein interaction residues in the glycophorin A transmembrane helix-helix dimer was carried out. The results demonstrate that the glycophorin A transmembrane sequence dimerizes when its GxxxG motif is abolished by mutation to large aliphatic residues...
متن کاملEffects of Helix Angle Variations on Stability of Low Immersion Milling
The stability behavior of low immersion helical end milling processes is investigated in this paper. Low radial immersion milling operations involve interrupted cutting which induces chatter vibration under certain cutting conditions. Time Finite Element Analysis (TFEA) is suggested for an approximate solution for delayed differential equations encountered during interrupted milling. An improve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 25 شماره
صفحات -
تاریخ انتشار 2001